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Abstract

In this paper, an approximate power flow model is developed for the analysis of the flexural waves in
finite orthotropic plate transversely vibrating in the medium-to-high frequency ranges. The derived energy
equation for the model is expressed with time- and locally space-averaged farfield wave energy density. It
could be the more general form than that of the conventional power flow analysis model seen in the
isotropic plate. With the derived model, dynamic characteristics varying with the direction can be
expressed. To verify the validity and accuracy of the model, numerical analyses are performed for the case
where a finite rectangular plate is excited by a harmonic point force, and the calculated results expressed
with the energy levels are compared with classical modal solutions by changing the frequency and the
damping loss factor of the plate. The dominant power transmission paths in the plate are also predicted
from the distribution of the approximate intensity fields.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The power flow analysis (PFA) method has been developed as a promising vibro-acoustic
prediction tool of medium-to-high frequency ranges for recent decades. It has been generally
noted that the PFA method offers an improved solution to the statistical energy analysis (SEA)
that does not give the information on the energy variation in a subsystem and it is impossible to
consider the local power input and damping treatment. The PFA model, analogous to the steady
state heat flow model, was introduced by Belov et al. [1]. Nefske and Sung [2] applied power flow
finite element method (PFFEM) for predicting the flexural vibration of beams. Further studies on
PFA for rods and beams were performed by Wohlever and Bernhard [3–5]. Bouthier and

*Corresponding author. Tel.: +82-2-880-8757; fax: +82-2-888-9298.

E-mail address: syhong@gong.snu.ac.kr (S.-Y. Hong).

0022-460X/03/$ - see front matter r 2002 Elsevier Science Ltd. All rights reserved.

doi:10.1016/S0022-460X(02)01296-8



Bernhard [4–7] developed approximate power flow models for the propagation of the flexural
waves in isotropic thin plates and membranes, and Park et al. [8] derived energy equations for the
in-plane waves in isotropic thin plates.
Most of the dynamic complex structures such as ships and planes include the plates made of

orthotropic materials and the stiffened or reinforced plates [9–11]. These naturally and
structurally orthotropic plates have different bending stiffnesses in two perpendicular directions,
on which the energy distribution and the power transmission path may greatly depend on certain
conditions. Until recently, the development of the power flow models for the PFA method has
been mainly focused on isotropic structural elements. Thus, more general power flow
formulations are required for proper application of the PFA method to orthotropic structural
elements.
The aim of this work is to develop an approximate power flow model that can be utilized to

predict the distribution of energy and the power transmission path of the orthotropic plates
vibrating in the medium-to-high frequency ranges in a time- and locally space-averaged sense.
Numerical analyses are performed for a finite rectangular orthotropic plate simply supported
along the edges and excited by a transverse harmonic point force located in the middle of the
plate. The results obtained from the derived PFA model are compared with those from classical
theory on orthotropic plates, and the effects of the frequency and damping are investigated.

2. Approximate power flow model for the transverse vibration of finite orthotropic plates

The equation of motion of thin orthotropic plates excited by a harmonic point force located at
(x0, y0) of which the amplitude and the frequency are F and o, respectively, can be written as [9,11]

Dxc

@4w

@x4
þ 2Hc

@4w

@x2@y2
þ Dyc

@4w

@y4
þ m

@2w

@t2
¼ Fdðx � xoÞdðy � yoÞejot; ð1Þ

where w is the transverse displacement and m is the mass per unit area of the plate. Dxc and Dyc

are the complex bending stiffnesses in the x and y directions, respectively, and are written as

Dxc ¼ Dxð1þ jZÞ and Dyc ¼ Dyð1þ jZÞ; ð2Þ

where Z is the hysteretic damping loss factor. Hc in Eq. (1) is the complex effective torsional
stiffness. When the thickness of the plate is constant, the transverse displacement relatively very
small and the deformation properly elastic, the effective torsional stiffness, Hc; can be assumed to
be the geometric mean value of the bending stiffnesses Dxc and Dyc; as shown in the following
expression [9]:

Hc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DxcDyc

p
: ð3Þ

The effective torsional stiffness expressed by Eq. (3) makes it easy to mathematically handle the
equation of motion given by Eq. (1). Cremer and Heckl showed that Eq. (3) is a very good
approximation for many practical orthotropic plates [12]. Substituting Eq. (3) into Eq. (1), the
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equation of motion can be rewritten as

Dxc
@4w

@x4
þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DxcDyc

p @4w

@x2@y2
þ Dyc

@4w

@y4
þ m

@2w

@t2
¼ Fdðx � xoÞdðy � yoÞejot; ð4Þ

from which an approximate power flow model of the orthotropic plates is investigated.
Eq. (4) has both far and nearfield solutions. It was shown by Noiseux [13] that the farfield

solution is useful for the PFA of vibrating plates. The energy model for isotropic plates derived by
Bouthier and Bernhard [4,6] was obtained with the farfield solution of the equation of motion and
appeared to be good representation of the approximate response of the plates. Thus, as in the
Bouthier’s works, only the farfield solutions are utilized in this work for relevant analyses. When
considering plane waves, the general form of the farfield solution can be expressed as the sum of
the plane progressive wave components:

wff ðx; y; tÞ ¼ Ae�jðkxxþkyyÞ þ Bejðkxx�kyyÞ þ Ce�jðkxx�kyyÞ þ DejðkxxþkyyÞ� �
ejot; ð5Þ

where the unknown constants, A, B, C and D, are the amplitudes of the corresponding
wave components. kx and ky are the complex wave numbers in the x and y directions, respectively.
When kxl and kyl are real parts of kx and ky , the dispersion relation can be expressed asffiffiffiffiffiffi

Dx

p
k2

xl þ
ffiffiffiffiffiffi
Dy

p
k2

yl

� �2
¼ o2m: ð6Þ

If the damping is small, kx and ky are well approximated by

kx ¼ kxl 1� j
Z
4

� �
and ky ¼ kyl 1� j

Z
4

� �
: ð7Þ

In general, the vibrational energy in the plates is transmitted by shear forces, bending moments
and twisting moments. The shear forces Qxz and Qyz of the orthotropic plate with the effective
torsional stiffness H ¼ ðDxDyÞ

1=2 are expressed by the transverse displacement as

Qxz ¼ � Dxc

@3w

@x3
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DxcDyc

p @3w

@x@y2

� �
ð8Þ

and

Qyz ¼ � Dyc
@3w

@y3
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DxcDyc

p @3w

@x2@y

� �
; ð9Þ

respectively. The bending moments, Mx and My; are also written as

Mx ¼ �Dxc
@2w

@x2
þ ny

@2w

@y2

� �
ð10Þ

and

My ¼ �Dyc

@2w

@y2
þ nx

@2w

@x2

� �
; ð11Þ
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respectively, where nx and ny are the effective Poisson ratios of the orthotropic plate in the x and y

directions, respectively. The twisting moment of the plates, Mxy ðMyx ¼ MxyÞ are written as

Mxy ¼ � 1�
ffiffiffiffiffiffiffiffiffi
nxny

p� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DxcDyc

p @2w

@x@y
: ð12Þ

The total energy density is the sum of the kinetic and potential energy densities. With the above
equations (8)–(12), the time-averaged total energy density of the orthotropic plate can be
expressed as

eh i ¼
1

4
Re Dxc

@2w

@x2

@2w

@x2

� �n

þ2
ffiffiffiffiffiffiffiffiffi
nxny

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DxcDyc

p @2w

@x2

@2w

@y2

� �n
(

þDyc
@2w

@y2
@2w

@y2

� �n

þ2 1�
ffiffiffiffiffiffiffiffiffi
nxny

p� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DxcDyc

p @2w

@x@y

@2w

@x@y

� �n

þm
@w

@t

@w

@t

� �n
)
; ð13Þ

where Re{ } represents the real part. The bracket hi means the time average over one period, and
the superscript * indicates the complex conjugate. The x and y components of the time-averaged
intensity qh i of a vibrating orthotropic plate are expressed by the shear forces, bending moments,
twisting moments and the transverse displacement, as follows:

qxh i ¼
1

2
Re �Qxz

@w

@t

� �n

þMx

@2w

@x@t

� �n

þMxy

@2w

@y@t

� �n
( )

ð14Þ

and

qy

� �
¼
1

2
Re �Qyz

@w

@t

� �n

þMy

@2w

@y@t

� �n

þMyx

@2w

@x@t

� �n
( )

; ð15Þ

respectively. The farfield energy density can be obtained by substituting Eq. (5) into Eq. (12). The
expression for the time-averaged farfield energy density expanded in terms of the constants
A;y;D in Eq. (5) becomes

eh i ¼ 1
4
Re Dxc kxj j4 A½ 
��þ B½ 
þ�þ C½ 
�þþ D½ 
þþ



 

2n
þ 2

ffiffiffiffiffiffiffiffiffi
nxny

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DxcDyc

p
k2

x k2
y

� �n

A½ 
��þ B½ 
þ�þ C½ 
�þþ D½ 
þþ


 

2

þ 2 1�
ffiffiffiffiffiffiffiffiffi
nxny

p� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DxcDyc

p
kxj j2 ky



 

2 A½ 
��� B½ 
þ�� C½ 
�þþ D½ 
þþ


 

2

þDyc ky



 

4 A½ 
��þ B½ 
þ�þ C½ 
�þþ D½ 
þþ


 

2

þmo2 A½ 
��þ B½ 
þ�þ C½ 
�þþ D½ 
þþ


 

2o; ð16Þ

where [ ]77 means [ ]� exp(7jkxx7jkyy). The x and y components of the farfield intensity
can be obtained by substituting Eq. (5) into Eqs. (14) and (15). The expanded expressions for the
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time-averaged farfield intensity components are written as

qxh i ¼
o
2
Re kx Dxck

2
x þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DxcDyc

p
k2

y

� �n
� A½ 
��� B½ 
þ�þ C½ 
�þ� D½ 
þþ� �

A½ 
��þ B½ 
þ�þ C½ 
�þþ D½ 
þþ� �n
þDxc k2

x þ nyk2
y

� �
kn

x

� A½ 
��þ B½ 
þ�þ C½ 
�þþ D½ 
þþ� �
A½ 
��� B½ 
þ�þ C½ 
�þ� D½ 
þþ� �n

þ 1�
ffiffiffiffiffiffiffiffiffi
nxny

p� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DxcDyc

p
kx ky



 

2
� A½ 
��� B½ 
þ�� C½ 
�þþ D½ 
þþ� �

A½ 
��þ B½ 
þ�� C½ 
�þ� D½ 
þþ� �no ð17Þ

and

qy

� �
¼
o
2
Re ky Dyck

2
y þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DxcDyc

p
k2

x

� �n
� A½ 
��þ B½ 
þ�� C½ 
�þ� D½ 
þþ� �

A½ 
��þ B½ 
þ�þ C½ 
�þþ D½ 
þþ� �n
þDyc k2

y þ nxk2
x

� �
kn

y

� A½ 
��þ B½ 
þ�þ C½ 
�þþ D½ 
þþ� �
A½ 
��þ B½ 
þ�� C½ 
�þ� D½ 
þþ� �n

þ 1�
ffiffiffiffiffiffiffiffiffi
nxny

p� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DxcDyc

p
kxj j2ky

� A½ 
��� B½ 
þ�� C½ 
�þþ D½ 
þþ� �
A½ 
��� B½ 
þ�þ C½ 
�þ� D½ 
þþ� �no ð18Þ

Eqs. (16)–(18) consist of purely exponentially decayed terms (i.e., ½A
��j j2;y; ½D
þþ


 

2) and

spatially harmonic terms (i.e., [A]�� ([B]+�)*, [C]�+([B]+�)*). At this stage, no obvious relations
between the energy density (Eq. (16)) and the intensity components (Eqs. (17) and (18)) can be
found. Thus, the time-averaged farfield energy density and intensity are spatially averaged over a
half wavelength for small damping in the following manner [6,8]:

*eh i ¼
kxlkyl

p2

Z p=kyl

0

Z p=kxl

0

eh i dx dy ð19Þ

and

*qh i ¼
kxlkyl

p2

Z p=kyl

0

Z p=kxl

0

qh i dx dy; ð20Þ

respectively, where *eh i and *qh i are the time- and space-averaged energy density and intensity,
respectively. The space-averaging process removes the interference of different wave components
and thus, the spatially harmonic terms in Eqs. (16)–(18) can be neglected by the above
equations (19) and (20). Moreover, neglecting all of the second and higher order terms
of the damping loss factor, which is small, yields a simplified expression for the energy density as
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follows (Appendix B):

*eh i ¼ 1
2
o2m Aj j2e�� þ Bj j2eþ� þ Cj j2e�þ þ Dj j2eþþ� �

; ð21Þ

where e77 means expf7ðZ=2Þkxlx7ðZ=2Þkylyg: It can be noted in Eq. (21) that the total farfield
wave energy density may be represented as the linear combination of the energy densities of four
plane wave components when the damping is small and the wave interferences are neglected. The
simplified expressions for the x and y components of the time- and space-averaged intensity are
written as

*qxh i ¼ okxl

ffiffiffiffiffiffi
Dx

p ffiffiffiffiffiffiffiffiffiffi
o2m

p
Aj j2e�� � Bj j2eþ� þ Cj j2e�þ � Dj j2eþþ� �

ð22Þ

and

*qy

� �
¼ okyl

ffiffiffiffiffiffi
Dy

p ffiffiffiffiffiffiffiffiffiffi
o2m

p
Aj j2e�� þ Bj j2eþ� � Cj j2e�þ þ Dj j2eþþ� �

ð23Þ

respectively. In Eqs. (22) and (23), the net intensity is represented as the subtraction of the
intensities of the waves propagating in the negative direction from those of the waves propagating
in the positive direction. From Eqs. (21)–(23) and the dispersion relation (Eq. (6)), it can be easily
found that the x and y components of the time- and locally space-averaged intensity of the farfield
wave are proportional to the first derivatives of the time- and locally space-averaged farfield wave
energy density with respect to x and y; as follows:

*qxh i ¼ �
4

Zo

ffiffiffiffiffiffiffiffiffiffiffiffi
o2Dx

m

s
@ *eh i
@x

ð24Þ

and

*qy

� �
¼ �

4

Zo

ffiffiffiffiffiffiffiffiffiffiffi
o2Dy

m

s
@ *eh i
@y

; ð25Þ

respectively. Consequently, rearranging Eqs. (24) and (25) into a vector form, the intensity can be
rewritten as

*qh i ¼ �
c2gx

Zo
@

@x
iþ

c2gy

Zo
@

@y
j

 !
*eh i; ð26Þ

where cgx and cgy are defined here as follows:

cgx ¼ 2
o2Dx

m

� �1=4

and cgy ¼ 2
o2Dy

m

� �1=4

; ð27Þ

respectively. Eq. (26) is the expression for the vibrational energy transmission, in which the dynamic
characteristics of the orthotropic plates is sustained due to the different values of cgx and cgy:
The power injected by external loads into an elastic medium is dissipated due to the damping

and is transmitted to the next media. For the steady state elastic system, the power balance
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equation can be written as

r � qþ pdiss ¼ pin; ð28Þ

where pdiss and pin are the dissipated power due to the damping of the system and the input power,
respectively. From the work of Cremer and Heckl [12], the time-averaged dissipated power in an
elastic medium with small structural damping is proportional to the time-averaged total energy
density in the form

pdissh i ¼ Zo eh i; ð29Þ

where it is assumed that the kinetic and potential energies of the medium are approximately the
same. Combination of the power balance equation (Eq. (28)) with the energy transmission
relation (Eq. (26)) and the power dissipation relation (Eq. (29)) yields the second order partial
differential equation that takes the total energy density as a primary variable:

�
c2gx

Zo
@2

@x2
þ

c2gy

Zo
@2

@y2

 !
*eh i þ Zo *eh i ¼ *pinh i: ð30Þ

Eq. (30) is a power flow model expressed with the time- and space-averaged energy density for the
farfield flexural waves in orthotropic plates.
If both the bending stiffnesses Dx and Dy of the plate are assumed to be equal to the bending

stiffness D of an isotropic plate, cgx and cgy then become

cgx ¼ cgy ¼ cg ¼ 2
o2D

m

� �1=4

; ð31Þ

where cg is the group velocity of the corresponding isotropic plate. In this particular case, the
energy equation is deduced from Eq. (30) as follows:

�
c2g

Zo
@2

@x2
þ

@2

@y2

� �
*eh i þ Zo *eh i ¼ *pinh i ð32Þ

where *eh i is the time- and space-averaged total energy density of the farfield waves in isotropic
thin plates. It can be known that Eq. (32) is the same as the energy equation developed by
Bouthier and Bernhard [6–9] for the farfield flexural waves in isotropic thin plates.

3. Power flow analysis of a rectangular orthotropic plate

3.1. Approximate solution of energy equation

In this section, the energy equation derived in the previous section is applied to the finite
rectangular orthotropic plate simply supported along its edges and excited by a transverse point
force at a single frequency. When the exciting force is located at (x0; y0) in the plate, Eq. (30)
becomes

�
c2gx

Zo
@2

@x2
þ

c2gy

Zo
@2

@y2

 !
*eh i þ Zo *eh i ¼ Pind x � xoð Þd y � yoð Þ; ð33Þ
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where Pin is the time-averaged input power due to the exciting force and d is the Dirac delta.
When the plate is simply supported, free or fixed at its boundary, it can be assumed that there is
no outflow of power from the boundary, and thus the energy density solution of Eq. (34) can be
expressed by the double Fourier series of the cosine functions with respect to the spatial variables
x and y [5,14]:

*eh i ¼
XN
m¼0

XN
n¼0

Emn cos
mp
Lx

x

� �
cos

np
Ly

y

� �
; ð34Þ

where Emn is the coefficient of (m; n) mode of the energy density, and Lx and Ly are the dimensions
of the plate as shown in Fig. 1. The input power can also be represented in the form of the cosine
series:

Pind x � xoð Þd y � yoð Þ ¼
XN
m¼0

XN
n¼0

Pmn cos
mp
Lx

x

� �
cos

np
Ly

y

� �
; ð35Þ

where the coefficient of (m, n) mode, Pmn; is

Pmn ¼
emn

LxLy

Pin cos
mp
Lx

x0

� �
cos

np
Ly

y0

� �
: ð36Þ

Here, the factor emn is determined by

emn ¼

1; m ¼ 0 and n ¼ 0;

2; ðm ¼ 0 and na0Þ or ðma0 and n ¼ 0Þ;

4; ma0 and na0:

8><
>: ð37Þ

Substituting Eqs. (34) and (35) into the energy equation (30) yields the modal coefficient of the
energy density solution in the following expression:

Emn ¼

emn

LxLy

Pin cos
mp
Lx

xo

� �
cos

np
Ly

yo

� �
c2gx

Zo
mp
Lx

� �2

þ
c2gy

Zo
np
Ly

� �2

þZo

: ð38Þ

  

  

 

  

x

y

Lyy

Lx

h

Fig. 1. Dimensions of the rectangular orthotropic plate.
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The x and y components of the intensity can be obtained by substituting the energy density solution
expressed by Eq. (34) into the energy transmission relation represented by Eqs. (24) and (25):

*qxh i ¼
c2gx

Zo

XN
m¼1

XN
n¼0

Emn
mp
Lx

� �
sin

mp
Lx

x

� �
cos

np
Ly

y

� �
ð39Þ

and

*qy

� �
¼

c2gy

Zo

XN
m¼0

XN
n¼1

Emn

np
Ly

� �
cos

mp
Lx

x

� �
sin

np
Ly

y

� �
; ð40Þ

respectively.

3.2. Numerical examples

Numerical analyses are performed for the finite rectangular orthotropic plate simply supported
along its edges and excited by a transverse harmonic point force as shown in Fig. 2. The time- and
locally space-averaged energy density of farfield flexural waves is calculated by the approximate
solution (Eq. (34)) of the energy equation developed in this work for vibrating orthotropic plates, and
the intensity field in the plate is obtained from Eqs. (39) and (40). The energy density distributions
obtained by the developed approximate power flow model are compared with the results obtained
from the classical solution for the displacement of the corresponding plate (Appendix A). The
dimensions and thickness of the plate shown in Fig. 1 are Lx ¼ Ly¼ 1 m and h = 1mm; respectively,
and the material properties of the plate are assumed to be the same as those of pure aluminum. It is
assumed that the plate is stiffened along the y direction and thus Dy is 20 times greater than Dx that is
the bending stiffness of the original aluminum plate. The force is located at x0 ¼ Lx=2 and y0 = Ly /2
in the plate and its amplitude is F =1N: The time-averaged input power can be calculated as follows:

Pin ¼
1

2
Re Fejot

� �
�

@wðx0; y0; tÞ
@t

� �n� �
; ð41Þ

where wðx0; y0; tÞ can be obtained by Eq. (A.2) with x ¼ x0 and y ¼ y0: To obtain the PFA
solutions, Eq. (41) is utilized as the input power Pin included in Eq. (38).

 

 

 

F  exp( j�t)  

Fig. 2. Simple supports and external harmonic force on the plate.
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When the exciting frequency is f = 1kHz, the distributions of the energy density obtained from
the classical displacement method (Eq. (4)) for various values of damping loss factor (Z=0.01,
0.05, 0.1 and 0.2) are shown in Fig. 3, and the corresponding results from the developed PFA
model (Eq. (33)) are illustrated in Fig. 4. For the sufficient convergence of the solution, 90 000
lower modal terms of the Fourier series are accumulated to calculate the classical and PFA results,
respectively. The reference energy density of the energy level is 1� 10�12 J=m2: As the plate is
treated with larger damping, the global variation of the classical energy density becomes relatively
faster as seen in Fig. 3. It can be observed in Fig. 4 that the PFA solutions represent well the
global variation of the classical solutions, which may be used meaningfully for medium-to-high
frequency problems. As the frequency of interest is increased, the uncertainties of the dynamic
behavior become more prominent and the global phenomena come to give more significant
information than the local phenomena.
When the frequency is set to be f =10kHz, several patterns of energy density distribution

predicted by the classical method can be observed in Fig. 5. In comparison with the previous case as
shown in Fig. 3, the energy density decreases fast as going far from the excitation point. When the
plate is treated with larger damping, the global variation of the result appears to be more obvious,
which is well approximated by the PFA solutions as shown in Fig. 6. It should be noted that the
energy density does not vary at the same rate for all directions due to the discrepancy between the
values of the bending stiffnesses Dx and Dy; which can be easily observed with large damping as
shown in Fig. 5(d), the corresponding global variation being well approximated by Fig. 6(d).

Fig. 3. Classical energy density distributions of the orthotropic plate when f = 1kHz, x0 ¼ Lx=2 and y0 ¼ Ly=2: The
reference energy density is 1� 10�12 J=m2: (a) Z=0.01, (b) Z=0.05, (c) Z=0.1, (d) Z=0.2.
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In Fig. 7, the energy density distributions predicted by the PFA model are compared with those
by classical method along the line x ¼ Lx=2: It can be found that the PFA solutions are useful in
predicting the locally space-averaged distribution of the energy density. Fig. 8 illustrates the
comparisons of the energy density distributions along the line y ¼ Ly=2 in the plate, from which
good agreements between the PFA solutions and the classical solutions are observed in the
smoothed sense.
For the next examples, the energy levels of the classical and the PFA solutions are spatially

averaged over the whole area of the plate, and are compared for different frequencies setting
damping loss factors Z=at 0.01 and 0.1. For the spatial-averaging, 2500 points at regular intervals
on the plate are used. It can be observed in Fig. 9 that the PFA energy levels are as a whole in
good agreement with the classical energy levels.
The average energy levels of the classical and the PFA solutions are also plotted for various

damping loss factors when the frequencies are set to be f =1 kHz and 10 kHz. It can be seen in
Fig. 10(a) that when the frequency is f =1kHz, two results are nearly constant up to about
Z=0.01 and then begin to decrease smoothly as the damping is increased. In this frequency, the
magnitudes of the error between the two kinds of the results are not over 1 dB for every damping
loss factor of interest. If the frequency is increased to f =10kHz, the energy levels of two results
are totally decreased and their errors also become negligible, as shown in Fig. 10(b).
In the last examples, the classical intensity fields and the approximate PFA intensity fields,

when the frequency and the damping are f =1kHz and Z=0.1, are represented in Fig. 11. It can

Fig. 4. Approximate energy density distributions of the orthotropic plate when f = 1kHz, x0 ¼ Lx=2 and y0 ¼ Ly=2:
The reference energy density is 1� 10�12 J=m2: (a) Z=0.01, (b) Z=0.05, (c) Z=0.1, (d) Z=0.2.
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be known from the comparison of two results that the PFA solution is a good smoothed
representation of the classical solution and may be usefully applied to predict the dominant power
transmission paths. It can be seen in Fig. 12 that when the frequency is increased to f = 10kHz,
the results of the both methods become more similar to each other.

4. Conclusions

An approximate power flow model for transversely vibrating orthotropic plates has been
developed in order to extend the application range of the power flow analysis (PFA) method to
the medium-to-high frequency vibration of orthotropic plate structures. To derive the
corresponding energy equation, the farfield components of the plane wave were utilized, and
time- and space-averaging were performed over a period and a half wavelength with the
assumption that the damping is small. The developed model has a more general form covering the
differences in the bending stiffness, and the PFA model of the isotropic plate can be easily derived
as a specific case of the developed model. From numerical examples, the approximate energy and
intensity field obtained by the derived energy equation are seen to well represent the global
variation of the response with the reliable results.
Further studies on the development of new power flow models for in-plane waves of the

orthotropic plate and on the prediction of the energy and intensity field in coupled orthotropic
plates are recommended.

Fig. 5. Classical energy density distributions of the orthotropic plate when f¼ 10 kHz; x0 ¼ Lx=2 and y0 ¼ Ly=2: The
reference energy density is 1� 10�12 J=m2: (a) Z=0.01, (b) Z=0.05, (c) Z=0.1, (d) Z=0.2.
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Appendix A. Classical solution

The equation of motion for an orthotropic plate excited by a harmonic point force may be given by

Dxc
@4w

@x4
þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DxcDyc

p @4w

@x2@y2
þ Dyc

@4w

@y4
þ m

@2w

@t2
¼ Fdðx � x0Þdðy � y0Þejot: ðA:1Þ

When the plate is simply supported along its edges, the displacement solution of the equation of
motion can be expressed by the double sine series of the spatial variables x and y:

w x; y; tð Þ ¼
XN
m¼1

XN
n¼1

Wmn sin
mp
Lx

x

� �
sin

np
Ly

y

� �
exp jotð Þ: ðA:2Þ

The force is also expressed by the double series of the sine function in the form:

Fd x � xoð Þd y � yoð Þexp jotð Þ ¼
XN
m¼1

XN
n¼1

Fmnsin
mp
Lx

x

� �
sin

np
Ly

y

� �
exp jotð Þ: ðA:3Þ

Fig. 6. Approximate energy density distributions of the orthotropic plate when f = 10kHz, x0 ¼ Lx=2 and y0 ¼ Ly=2:
The reference energy density is 1� 10�12 J=m2: (a) Z=0.01, (b) Z=0.05, (c) Z=0.1, (d) Z=0.2.
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Substituting the displacement and force represented by the double series into the above equation
of motion yields

Wmn ¼

4

LxLy

F sin
mp
Lx

x0

� �
sin

np
Ly

y0

� �

Dxc

mp
Lx

� �4

þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DxcDyc

p mp
Lx

� �2
np
Ly

� �2

þDyc

np
Ly

� �4

�o2m

: ðA:4Þ

Fig. 7. Comparisons of the energy density distributions along the line x = Lx /2. The reference energy density is

1� 10�12 J=m2: (a) f = 1kHz and Z=0.01, (b) f = 1kHz and Z=0.1, (c) f = 10kHz and Z=0.01, (d) f = 10kHz and

Z=0.1: — , classical solutions; - - - -, PFA solutions.
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Thus, the displacement solution of the Eq. (A.1) can be obtained by substituting Eq. (A.4) into
Eq. (A.2). After calculating the displacement solution, the time-averaged energy density can be
finally calculated by substituting the obtained solution into Eq. (13). The x and y directional
components of the time-averaged intensity can be also obtained by substituting the displacement
solution into the Eqs. (14) and (15), respectively.

Fig. 8. Comparisons of the energy density distributions along the line y = Ly /2. The reference energy density is

1� 10�12 J=m2: (a) f = 1kHz and Z=0.01, (b) f = 1kHz and Z=0.1, (c) f = 10 kHz and Z=0.01, (d) f=10 kHz and

Z=0.1: — , classical solutions; - - - -, PFA solutions.
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Fig. 9. Average energy levels of the orthotropic plate for various frequencies. The reference energy density is

1� 10�12 J=m2: (a) Z=0.01, (b) Z=0.1: , classical solutions; , PFA solutions.
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Fig. 10. Average energy levels of the orthotropic plate for various damping. The reference energy density is

1� 10�12 J=m2: (a) f = 1kHz, (b) f = 10kHz: , classical solutions; , PFA solutions.
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Appendix B. Space-averaging process

If Eq. (16) is expanded, the time-averaged total energy density can be rewritten as

eh i ¼ e1h i þ e2h i; ðB:1Þ

Fig. 11. Intensity distributions of the orthotropic plate when f = 1kHz, Z=0.1, x0 ¼ Lx=2 and y0 ¼ Ly=2: The
reference intensity is 1� 10�12 W=m2: (a) classical solution, (b) PFA solution.
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where e1h i and e2h i are defined here by

e1h i ¼ 1
4
Re
n�

Dxc kxj j4þ2
ffiffiffiffiffiffiffiffiffi
nxny

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DxcDyc

p
k2

x k2
y

� ��
þ2 1�

ffiffiffiffiffiffiffiffiffi
nxny

p� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DxcDyc

p
kxj j2 ky



 

2::
þDyc ky



 

4þmo2
�

A½ 
��j j2þ B½ 
þ�


 

2þ C½ 
�þ



 

2þ D½ 
þþ


 

2� �o

ðB:2Þ

Fig. 12. Intensity distributions of the orthotropic plate when f = 10kHz, Z=0.1, x0 ¼ Lx=2 and y0 ¼ Ly=2: The
reference intensity is 1� 10�12 W=m2: (a) classical solution, (b) PFA solution.
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and

e2h i ¼ 1
4Re

( 
Dxc kxj j4þ2

ffiffiffiffiffiffiffiffiffi
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p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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ffiffiffiffiffiffiffiffiffi
nxny

p� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DxcDyc
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: ðB:3Þ

Substituting Eq. (B.1) into Eq. (19) yields the time- and locally space-averaged total energy
density:

*eh i ¼
kxlkyl

p2

Z p=kyl

0

Z p=kxl

0

e1h i þ e2h i dx dy ¼ *e1h i þ *e2h i: ðB:4Þ

Then, the integrals for the first unknown term j½A
��j2 in Eq. (B.2) becomeZ p=kyl

0

Z p=kxl

0

A½ 
��j j2dx dy ¼
Z p=kyl

0

Z p=kxl

0

Aj j2e�ðZ=2Þkxl x�ðZ=2Þkyl ydx dy ðB:5Þ

where if the damping of the plate is small (Z{1), the exponential function in the right-hand side
can be assumed to be nearly constant on the intervals of integration 0pxpðp=kxlÞ and
0pypðp=kylÞ:Z p=kyl

0

Z p=kxl

0

Aj j2e�ðZ=2Þkxlx�ðZ=2Þkylydx dyE Aj j2e��
Z p=kyl

0

Z p=kxl

0

dx dy

¼
p2

kxlkyl

Aj j2e��: ðB:6Þ

The other unknown terms in Eq. (B.2) can be also integrated through the same process.
Consequently, *e1h i can be obtained by

*e1h i ¼ 1
4
Re

(
Dxc kxj j4þ2

ffiffiffiffiffiffiffiffiffi
nxny

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DxcDyc

p
k2

x k2
y
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þ2 1�

ffiffiffiffiffiffiffiffiffi
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p� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
kxj j2 ky
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þDyc ky
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: ðB:7Þ
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The integrals for the first unknown term ½A
��ð½B
þ�Þ� in Eq. (B.3) can be obtained in the similar
way:

Z p=kyl

0

Z p=kxl

0

A½ 
�� B½ 
þ�� ��
dxdy ¼AB�

Z p=kyl

0

e�ðZ=2Þkyly

Z p=kxl

0

e�2jkxlxdxdy

¼AB�
Z p=kyl

0

e�ðZ=2Þkyly
e�2jkxlx

�2jkxl






x¼p=kxl

x¼0
dy ¼ 0 ðB:8Þ

As seen in Eq. (B.8), all of the other unknown terms come to be zero due to the integration. Thus,
*e2h i is nullified:

*e2h i ¼ 0; ðB:9Þ

from which the time- and locally space-averaged total energy density *eh i comes to be equal
to /*e1S:

*eh i ¼ *e1h i: ðB:10Þ

When the coefficient terms, Re{y.}, in Eq. (B.8) are considered, they include high order terms of
damping loss factor Z as follows:
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Neglecting all of the second and higher order terms of the damping loss factor and substituting the
dispersion relation (Eq. (6)) into Eq. (B.11), the time- and locally space-averaged total energy
density *eh i can be finally obtained as the simplified Eq. (21).
When spatially averaging the intensity (Eqs. (17) and (18)) over a half wavelength, one can

obtain the following expressions through the same process of Eqs. (B.6) and (B.8):
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and
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The coefficient terms in Eq. (B.12) have high order terms of damping loss factor that is assumed to
be small:
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The coefficient terms in Eq. (B.13) can be written by
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Here, neglecting all of the second and higher order terms of the damping loss factor and
substituting the dispersion relation (Eq. (6)) and Betti’s reciprocity (nxDy ¼ nyDx) into Eqs. (B.14)
and (B.15), the time- and locally space-averaged intensity components can be finally obtained as
the simplified Eqs. (22) and (23).
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